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A Statistical Method for Identification of Polymorphisms That Explain
a Linkage Result
Lei Sun,1,* Nancy J. Cox,2,3 and Mary Sara McPeek1,2

Departments of 1Statistics, 2Human Genetics, and 3Medicine, University of Chicago, Chicago

Suppose that many polymorphic sites have been identified and genotyped in a region showing strong linkage with
a trait. A key question of interest is which site (or combination of sites) in the region influences susceptibility to
the trait. We have developed a novel statistical approach to this problem, in the context of qualitative-trait mapping,
in which we use linkage data to identify the polymorphic sites whose genotypes could fully explain the observed
linkage to the region. The information provided by this analysis is different from that provided by tests of either
linkage or association. Our approach is based on the observation that if a particular site is the only site in the
region that influences the trait, then—conditional on the genotypes at that site for the affected relatives—there
should be no unexplained oversharing in the region among affected individuals. We focus on the affected sib-pair
study design and develop test statistics that are variations on the usual allele-sharing methods used in linkage studies.
We perform hypothesis tests and derive a confidence set for the true causal polymorphic site, under the assumption
that there is only one site in the region influencing the trait. Our method is appropriate under a very general model
for how the site influences the trait, including epistasis with unlinked loci, correlated environmental effects within
families, and gene-environment interaction. We extend our method to larger sibships and apply it to an NIDDM1
data set.

Introduction

To identify genetic variation affecting susceptibility to a
complex disease, there are generally sequential stages
involved, from coarse, genomewide linkage mapping, to
fine mapping that may utilize linkage disequilibrium,
and then to positional cloning. Many statistical methods
have been developed for the first two stages of the pro-
cess. We focus on the third stage and describe here a
new statistical approach to guide positional cloning of
qualitative traits. Suppose that many polymorphic sites
have been identified and genotyped in a region showing
strong linkage with a trait. We assume that these sites
are all tightly linked and that they may be in linkage
disequilibrium with each other and with the suscepti-
bility locus. Ideally, we would like to determine which
site (or combination of sites) in the region influences
susceptibility to the trait. To accomplish this, we need
to distinguish the actual causal site from other sites that
are merely tightly linked or in linkage disequilibrium
with the causal site. Ultimately, only biological studies
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can establish that a particular genetic variation has the
consequence of increasing susceptibility to disease. How-
ever, statistical analysis of the available data can provide
guidance on which variants merit the next level of bi-
ological study.

Although the method we describe below (see Methods
section) is designed for qualitative traits, a similar idea
was proposed by Fulker et al. (1999) in the context of
a variance-components approach to combined linkage
and association analysis of quantitative traits in sib
pairs. Fulker et al. (1999) pointed out that testing link-
age while simultaneously modeling association would
provide a test of whether the putative QTL is a can-
didate or is merely in disequilibrium with a trait locus.
This idea was further developed by Cardon and Abe-
casis (2000), who also considered the implications for
the possible range of allele frequencies for the candidate
locus. In a similar context of quantitative trait analysis,
Soria et al. (2000) noted that if there is only one causal
variant in a region, then linkage analysis that is per-
formed conditional on the measured genotypes should
yield no evidence for linkage. They used this idea to
argue that the prothrombin G20210A mutation affects
the function of the prothrombin gene. A similar ap-
proach was used in simulation studies by Siegmund et
al. (2001). In a different context, Valdes and Thomson
(1997) applied a similar type of argument to provide a
way to test whether a particular combination of amino
acid sites could explain all the evidence for association
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of a region with a qualitative trait; they were particu-
larly interested in explaining associations with HLA.

Blangero et al. (2000) took a somewhat different ap-
proach to the problem of identifying causal polymor-
phisms in the context of variance-components methods
for quantitative traits. They assumed that all possible
causal polymorphisms in the region were genotyped and
contributed additively to the trait. In that case, they
proposed a Bayesian model-selection/averaging method
to approximate, for each polymorphic site, the posterior
probability that it is directly responsible for some of the
variation present in the phenotype, where they allowed
for more than one causal polymorphism in the region.

For qualitative traits, a statistical method for posi-
tional cloning was proposed by Horikawa et al. (2000).
They suggested a modified association study in which
they examined not only the differences in allele fre-
quencies between controls and cases but also how the
evidence for linkage was partitioned in pairs defined by
the genotype at the single-nucleotide polymorphism
(SNP) to be tested. They observe that, under the null
hypothesis of no association between a particular SNP
and the trait, if affected sib pairs (ASPs) are classified
according to the genotype at the SNP, the observed LOD
score should be divided into each group proportionally
to what is expected for each genotype category under
the null hypothesis. They performed simulation to assess
the P value of the observed LOD score in a group in
which both sibs have the at-risk genotype(s) at the SNP
to be tested, and they identified an SNP (SNP-43) that
showed significant association with the evidence for
linkage with type 2 diabetes.

A number of approaches developed for other pur-
poses are conceptually similar to that of Horikawa et
al. (2000). For example, Greenberg (1993) suggested
the partitioned association-linkage (PAL) test, further
developed by Hodge (1993) and Greenberg and Do-
neshka (1996), in which ASPs are partitioned on the
basis of the presence or absence of an associated allele
in the index case, and the identity-by-descent (IBD)
sharing is assessed separately in the ASPs where the
index case does and does not have the associated allele.
The approach of Greenberg (1993), Hodge (1993), and
Greenberg and Doneshka (1996) addresses the question
of the genetic model for the trait-associated locus (“nec-
essary” vs. “susceptibility” locus). They focus on the
situation in which moderate association has been de-
tected and distinguish two cases: (1) there is LD between
the marker locus and a locus necessary for trait ex-
pression, or (2) either there is LD between the marker
and a susceptibility locus, or the marker may be the
susceptibility locus itself, where the susceptibility locus
is neither necessary nor sufficient for trait expression.
This approach does not try to address the question of
whether a given marker is a susceptibility locus, as op-

posed to merely being in LD with a susceptibility locus.
However, the approach is mathematically similar to the
approach described by Horikawa et al. (2000) for iden-
tification of variants showing association with the evi-
dence for linkage. Similarly, the marker association
segregation x2 (MASC) approach, developed by Cler-
get-Darpoux et al. (1988), was designed for testing the
role of a candidate region in disease susceptibility and
can utilize both family linkage data and association
data. Although primarily developed to test hypotheses
on genetic models for HLA-associated disorders, the
rationale is clearly relevant to the problem we seek to
address here.

Our approach to the positional cloning problem is to
identify the polymorphic sites whose genotypes could
fully explain, in the statistical sense, the observed link-
age to the region. We frame the problem as a hypothesis
test. We focus on the case in which we assume that there
is only one causal polymorphic site in the region seg-
regating in the study population. (We also discuss an
extension to multiple tightly linked polymorphic sites
influencing the trait.) Under the single-site assumption,
for a given polymorphic site in the region, the null hy-
pothesis is that the site considered is the sole cause of
linkage to the region. We observe that, under this null
hypothesis, the conditional distribution of IBD sharing
among the affected relatives, in the region, given their
genotypes at the putative causal locus, does not depend
on the genetic model for the trait. A departure from the
null hypothesis implies that the hypothesized site is not
the sole cause of linkage to the region. Such a hypothesis
test can be performed on each of the polymorphic sites
typed in the region of interest. A confidence set for the
true causal site can be constructed by inversion of the
hypothesis test—that is, by the inclusion in the confi-
dence set of all the sites that are not rejected by the
hypothesis test (including those not tested). The results
of this approach provide information that is different
from that provided by tests of linkage or association.

To implement our approach, we focus on the sib-pair
study design with SNPs typed in the region of interest,
and we consider test statistics that are variations on the
usual allele-sharing methods. Our approach does not
require specification of mode of inheritance at the pu-
tative causal polymorphism. Moreover, our method al-
lows an arbitrary amount of epistasis with other un-
linked contributory loci, as well as correlated envir-
onmental effects within families, and gene-environment
interaction. We extend our method to larger sibships,
and we apply it to a data set developed in the context
of a positional cloning study (Horikawa et al. 2000).
Through both simulation studies and data analysis, we
find that we have power to reject sites that do not, on
their own, explain the evidence for linkage, even when
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Table 1

Conditional Distribution of the Number of AllelesP(DFG)
Shared IBD by a Sib Pair at a Particular SNP, Given the
Sibs’ Genotype Configuration at That SNP, Where f Is the
Frequency of Allele 1 in the Population

G

CONDITIONAL PROBABILITY THAT D IS

0 1 2

(1 1 1 1)
2f

2(1 � f)
2f

2(1 � f)
1

2(1 � f)

(1 1 1 2)
f

1 � f
1

1 � f
0

(1 1 2 2) 1 0 0

(1 2 1 2)
f(1 � f)

1 � f(1 � f)
1

2[1 � f(1 � f)]
1

2[1 � f(1 � f)]

(1 2 2 2)
1 � f

1 � (1 � f)
1

1 � (1 � f)
0

(2 2 2 2)
2(1 � f)

2[1 � (1 � f)]
2(1 � f)

2[1 � (1 � f)]
1

2[1 � (1 � f)]

these sites are both tightly linked and strongly associ-
ated with a susceptibility locus.

Methods

We first consider the case of sib pairs sampled at random
from a population, without regard to their phenotypes.
For this case, we derive the distribution of IBD sharing
by a sib pair at a particular SNP, conditional on the sibs’
genotypes at that SNP. We then consider the case in
which ASPs are sampled. We show that, under the null
hypothesis that a particular SNP is the sole cause of
linkage to the region, the distribution of IBD sharing by
an ASP, conditional on the sibs’ genotypes at that SNP,
is the same as in the case of random sib pairs. We argue
that this is true regardless of the mode of inheritance
and even in the presence of epistasis with unlinked loci,
correlated environmental effects within families, and
gene-environment interaction. This result allows us to
test for deviation from the null conditional distribution
of IBD sharing by ASPs and to construct a confidence
set of polymorphic sites that could explain the observed
linkage to the region.

Distribution of IBD Sharing Conditional on SNP
Genotypes: Random Sib Pairs

Consider the case in which sib pairs are drawn at ran-
dom from a population, regardless of their phenotypes.
We derive the conditional distribution of IBD sharing by
such a sib pair at a particular SNP, given the sibs’ gen-
otypes at that SNP. Denote by 1 and 2 the two alleles of
the SNP, and let , ,g p (1 1 1 1) g p (1 1 1 2) g p1 2 3

, , and(1 1 2 2) g p (1 2 1 2) g p (1 2 2 2) g p4 5 6

be the six possible genotype configurations for(2 2 2 2)
the sib pair at the SNP, where the first two integers rep-
resent the genotype of one sib and the last two integers
represent the genotype of the other sib, and where we
consider two sib-pair genotype configurations to be equiv-
alent if they are the same up to permutation of the two
sibs and permutation of the two alleles of each sib. To
complete the notation, let f be the frequency of allele 1
in the control population (not selected for the phenotype),
let G be the random variable representing the sibs’ ge-
notype configuration at the SNP and taking values in

, and let D be the number of alleles shared{g ,g , … ,g }1 2 6

IBD by the pair at the SNP locus. Table 1 gives the con-
ditional distribution of . The following equation{DFG}

illustrates the calculation for the case when G p g p1

, and :(1 1 1 1) D p 1

P[D p 1FG p (1 1 1 1)]

P[D p 1,G p (1 1 1 1)]
p

P(G p (1 1 1 1))

P[G p (1 1 1 1)FD p 1]P(D p 1)
p � P[G p (1 1 1 1)FD p j]P(D p j)

jp0,1,2

13f 2
p

1 1 14 3 2f � f � f4 2 4

2f
p .2(1 � f )

Note that depends on the relationship of the twoP(D)
individuals and is calculated under the assumptionP(GFD)
of Hardy-Weinberg equilibrium. The computation of

for a pair of outbred individuals appears inP(GFD)
Thompson (1975).

Distribution of IBD Sharing Conditional on SNP
Genotypes: ASPs

We now consider the case in which ASPs are drawn
at random from a population. We show that, under the
null hypothesis that a particular SNP is the sole causeH0

of linkage to the region, the conditional distribution of
IBD sharing by an ASP, given the sibs’ genotype config-
uration at that SNP, is the same as given in the previous
subsection. To show this, we first argue that the follow-



402 Am. J. Hum. Genet. 70:399–411, 2002

Table 2

Null Conditional Mean, ,m p E [S FG]G H pairs0

and Null Conditional Standard Deviation,
, of the Sharing Statistic�j p Var (S FG)G H pairs0

for an ASP, Given the Sibs’ GenotypeSpairs

Configuration G at a Particular SNP, under
the Null Hypothesis That the SNP Is theH0

Sole Causal Site in the Region, Where f Is
the Frequency of Allele 1 in the Population

G mG jG

(1 1 1 1)
2

1 � f

�2f

1 � f

(1 1 1 2)
1

1 � f

�f

1 � f

(1 1 2 2) 0 0

(1 2 1 2)
3

2[1 � f(1 � f)]

�1 � 10f(1 � f)

2[1 � f(1 � f)]

(1 2 2 2)
1

1 � (1 � f)

�(1 � f)

1 � (1 � f)

(2 2 2 2)
2

1 � (1 � f)

�2(1 � f)

1 � (1 � f)

ing equation holds, regardless of the mode of inheri-
tance:

P (both affectedFD,G) p P (both affectedFG) . (1)H H0 0

That is, given the genotype data at the sole causal site
in the region for an ASP, the event that both sibs are
affected by the trait is a Bernoulli trial with probability
depending only on the observed genotypes, independent
of the sharing at that location, as long as the other causal
loci are not linked to the region. Equation (1) implies
the following equation, which states that the conditional
distribution of IBD sharing by randomly sampled ASPs
is the same as that for randomly sampled sib pairs, re-
gardless of their phenotypes:

P (DFG,both affected)H0

P (both affectedFD,G)P (D,G)H H0 0p
P (both affectedFG)P (G)H H0 0

P (D,G)H0p p P (DFG) p P(DFG) ,H0P (G)H0

where because neither expressionP (DFG) p P(DFG)H0

contains phenotype information.

Hypothesis Testing and Confidence-Set Construction

In the previous subsection, we showed that, under the
null hypothesis that a particular SNP is the sole cause
of linkage to the region, the conditional distribution of
IBD sharing by an ASP, in the region, given the sibs’
genotype configuration at that SNP, can be derived with-
out specification of the mode of inheritance and is given
by table 1. For any SNP typed in the region, to test the
null hypothesis

H :the SNP is the sole causal site in the region ,0

we could construct a test that is a variation on whatever
method was used initially to detect linkage. (However,
note that our test is not a test for linkage; in fact, we
expect that all the polymorphisms in the region will be
tightly linked to the susceptibility locus.) For instance,
suppose that linkage was initially detected by means of
an allele-sharing method, with a given sharing statistic
S that measures the IBD sharing D. For example, one
might use (Fimmers et al. 1989), which counts, forSpairs

each pair of affected relatives, the number of alleles they
share and then sums that over all pairs of affected rel-
atives. For a pair of relatives with respective genotypes

and , the number of alleles they share is calcu-(i,j) (k,l)
lated as whered(i,k) � d(i,l) � d(j,k) � d(j,l), d(x,y) p 1
if alleles x and y are IBD. The null distribution of

derived in the previous subsection allows us to{DFG}

calculate the null conditional mean and null conditional
standard deviation of S, andm p E [SFG] j pG H G0

, where G is the sibs’ genotype configuration�Var (SFG)H0

at the SNP, and is the null hypothesis that the SNPH0

is the sole causal site in the region. For an ASP, table 2
gives and , when is used, for each of the sixm j SG G pairs

genotype configurations. To test our null hypothesis
, we could use a variation on the NPL score statisticH0

of Kruglyak et al. (1996), the linear likelihood of Whit-
temore (1996) and Kong and Cox (1997), or the ex-
ponential likelihood of Kong and Cox (1997). Consider
the usual tests for detection of linkage by these methods,
and let be the null hypothesis of no linkage, let m′H0

and j be the unconditional mean and standard deviation
of S under , , and , and let′ �H m p E [S] j p Var (S)′ ′0 H H0 0

be the standardized version of S for a′Z p (S � m)/j
particular family, for the usual test of linkage. To modify
any of these linkage methods to test our null hypothesis

, we replace with for′ GH Z p (S � m)/j Z p (S � m )/j0 G G

each family. Note that, whereas m and j depend only on
the relationships among the affected individuals, andmG

also depend on G, the genotype configuration for thejG

affected individuals at the SNP.
Given n ASPs, let be the number of alleles sharedDi

IBD by the ith sib pair, let be the sharing statistic forSi

the ith pair, let be the observed genotype configurationGi

for the ith pair at the SNP to be tested, and let GZ pi

be our new, conditional, standardized ver-(S � m )/ji G Gi i
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sion of . We could then consider the test statisticS Ti 1

(which is in a form analogous to that of the NPL score
statistic for testing linkage) for our null hypothesis:

n
G� w Zi i

ip1T p , (2)1 n
2�� wi

ip1

where is the weighting factor for the ith family (seewi

Kruglyak et al. 1996; Kong and Cox 1997). (The choice
of an appropriate weighting factor is discussed in detail
below.) We could also consider the test statistic (whichT2

is in a form analogous to that of the exponential log-
likelihood ratio for testing linkage):

ˆ ˆ�T p sign(d) 2[l(d) � l(0)] , (3)2

where d is a pa-Gl(d) � l(0) p log [P c (d) exp (dw Z )],i i i i

rameter that measures the magnitude of deviation of
the alternative likelihood from the null likelihood,

is the renor-G �1c (d) p [� P (Z p zFG ) exp (dw z)]zi H i i i0

malization constant, GP (Z p zFG ) p P (S p zj �H i i H i G0 0 i

, which can be calculated from the informationm FG )G ii

in tables 1 and 2 for the case of in an ASP, and ˆS dpairs

maximizes —that is, it maximizes . Withl(d) l(d) � l(0)
complete IBD data, the tests based on the statistics in
equations (2) and (3) are equivalent (assuming that exact
P values are used), with the version in equation (2) being
easier to calculate. However, with incomplete IBD in-
formation or when a small number of large families are
sampled and the normal approximation is used to assess
significance, the test based on equation (3) is preferred
(Kong and Cox 1997). The case of incomplete IBD in-
formation is discussed in more detail in the subsection
“Extension to Incomplete IBD Data” below. Another
possible variation would be to use test statistic , whichT3

is analogous to the linear log–likelihood-ratio and is of
the same form as equation (3), but here l(d) � l(0) p

. The test based on this statistic is notGlog [P (1 � dw Z )]i i i

equivalent to either of the previous two tests, except
asymptotically. To assess significance, one could use sim-
ulations to obtain the empirical distribution of the test
statistic , , or , conditional on . ToT T T (G ,G , … ,G )1 2 3 1 2 n

do this, we simulate conditional on for each i,D Gi i

using the distribution of given in table 1. Alter-{DFG}
natively, one could apply a normal approximation to the
conditional distribution of , , or . In principle, theT T T1 2 3

test could be two-sided. However, we note that the SNP
is assumed to be in a region showing strong linkage with
a trait. Therefore, when the SNP is not the sole cause
of linkage to the region, there is expected to be residual
linkage ( ) not explained by the SNP. In practicald̂ 1 0
applications, may indicate possible misspecifica-d̂ ! 0

tion of the allele frequency f or violation of the Hardy-
Weinberg assumption, which is useful information but
is not the alternative of interest. Thus, even if we were
to use a two-sided test, we would want to distinguish
between these two cases. To construct a confidence set
for the true causal site, we perform the corresponding
hypothesis test on each of the SNPs typed in the region.
A confidence set then includes all the SNPs that(1 � a)
are not significant at level a, and it also includes all
untested variation in the region.

Just as for tests of linkage, there are many different
possible choices of weighting factor for the ith familywi

when our standardized sharing statistic is combinedGZ
across families. The optimal weight for a particular fam-
ily depends on the amount of information contained in
the observed genotype data at the SNP. For instance, the
weight for an ASP with genotype configuration g p3

should be zero, since there is no variation in(1 1 2 2)
the IBD sharing given this genotype configuration. In
other words, a pair with genotype configuration
(1 1 2 2) does not provide any information under our
method. For pairs with the other five genotype config-
urations, one could choose equal weights or choose
weights that depend on the null conditional variances,
such as or .�w p j w p jG G

Proposed Test Is Not a Test of Linkage or Linkage
Disequilibrium

We point out that our test is neither a test of linkage
nor a test of linkage disequilibrium. An SNP may be
tightly linked or in significant linkage disequilibrium
with the causal polymorphism yet still not be able to
fully explain the linkage signal observed in the region.
In the NIDDM1 data set we analyze in the Results sec-
tion, SNPs 19, 22, 23, 25, 26, 28, 29, 38, and 43 all
show significant linkage and linkage disequilibrium
(Horikawa et al. 2000), but each is rejected as being the
sole cause of linkage to the region (see the “Application
to NIDDM1” subsection, below). Our simulations (see
the “Simulation Studies” subsection, below) also show
that there are cases in which a false putative causal SNP
is both tightly linked ( ) and in complete linkagev ≈ 0
disequilibrium ( ) with the true causal SNP, and′FD F p 1
yet our test still has some power to reject the null hy-
pothesis. Here, v is recombination fraction and ′D p

, if ,(p � p p )/ min {p (1 � p ),(1 � p )p } (p � p p ) 1 0ab a b a b a b ab a b

or , if′D p (p � p p )/ max {�p p , � (1 � p )(1 � p )}ab a b a b a b

, where is the frequency of haplotype(p � p p ) ! 0 pab a b ab

ab and and are the frequencies of alleles a and bp pa b

in the control population. Of course, if two SNPs are in
perfect linkage disequilibrium (i.e., if with the′FD F p 1
coupled alleles having identical allele frequencies), then
they are indistinguishable on the basis of the data, and
no statistical method can separate them.
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Table 3

Conditional Distribution, , of the IBD Configuration D for a Sib Trio at aP(DFG)
Particular SNP, Conditional on the Trio’s Genotype Configuration G at that SNP,
where f Is the Frequency of Allele 1 in the Population

G

CONDITIONAL PROBABILITY THAT D IS

(1 2 1 2 3 4) (1 2 1 3 2 4) (1 2 1 2 2 3) (1 2 1 2 1 2)

(1 1 1 1 1 1)
23f

2(1 � 3f)

26f
2(1 � 3f)

6f
2(1 � 3f)

1
2(1 � 3f)

(1 1 1 1 1 2)
f

1 � 3f
2f

1 � 3f
1

1 � 3f
0

(1 1 1 1 2 2) 1 0 0 0

(1 1 1 2 1 2)
f

2(1 � f)
1
2

1
2(1 � f)

0

(1 1 1 2 2 2) 0 1 0 0

(1 1 2 2 2 2) 1 0 0 0

(1 2 1 2 1 2)
3 f(1 � f)
2 1 � 3f(1 � f)

3 f(1 � f)
2 1 � 3f(1 � f)

3 1
4 1 � 3f(1 � f)

1 1
4 1 � 3f(1 � f)

(1 2 1 2 2 2)
1 � f

2(2 � f)
1
2

1
2(2 � f)

0

(1 2 2 2 2 2)
1 � f
4 � 3f

2(1 � f)
4 � 3f

1
4 � 3f

0

(2 2 2 2 2 2)
23(1 � f)
2(4 � 3f)

26(1 � f)
2(4 � 3f)

6(1 � f)
2(4 � 3f)

1
2(4 � 3f)

Extension to More-General Pedigrees

Our method of testing for a single causal SNP through
use of the sib-pair design can be generalized, in principle,
to any set of affected relatives. In the general case, G
would be the genotype configuration among the affected
individuals in the family, and D would be their IBD
configuration (Thompson 1974). For instance, for an
affected sib trio with SNP data, there are 10 possible
genotype configurations (up to permutation of the three
sibs and permutation of the two alleles of each sib) and
4 IBD configurations. The 4 IBD configurations are:

, which represents the case in which a pair(12 12 34)
of sibs shares 2 alleles IBD with each other and none
with the third sib, , which represents the case(12 13 24)
in which one sib shares 1 allele IBD with each of the
other two, who share 0 alleles IBD with each other,

, which represents the case in which a pair(12 12 23)
of sibs shares 2 alleles IBD with each other and 1 allele
IBD with the third sib, and , which represents(12 12 12)
the case in which every pair among the trio shares 2
alleles IBD. To calculate the conditional distribution of

for an affected sib trio, one needs the conditional{DFG}
distribution of (not shown) and the marginal dis-{GFD}
tribution of , which is ,{D} P[D p (12 12 34)] p 3/16

,P[D p (12 13 24)] p 3/8 P[D p (12 12 23)] p 3/8
and . Table 3 gives the con-P[D p (12 12 12)] p 1/16

ditional distribution of , and table 4 gives the null{DFG}
conditional mean and null conditional standard devia-
tion of S, when is used, for each of the 10 genotypeSpairs

configurations. We have derived similar results for sib-
ships with 4–6 affected sibs (results not shown). We have
implemented our method for affected sibships of sizes
2–6 and have applied it to the NIDDM1 data set of
Horikawa et al. (2000) (see the “Application to
NIDDM1” subsection, below).

Extension to Incomplete IBD Data

The extension of our tests to the case of incomplete
IBD information is similar to that for the usual allele-
sharing tests of linkage. For the usual test of linkage, when
the NPL score statistic or the linear likelihood is used
with incomplete IBD data, S is replaced by ,fullE [SFG ]′H0

the null expected value of S conditional on , the ge-fullG
notype data for all members of the family at all loci at
which they were typed. Here, is the hypothesis of no′H0

linkage. For the usual test of linkage, when the exponen-
tial likelihood is used with incomplete IBD data,

is replaced by . In the case′ ′ fullexp (dw Z ) E [exp (dw Z )FG ]′i i H i i0

of the NPL statistic, the above incomplete-data formu-
lation is conservative when the normal approximation is
applied, because the variance used to normalize the sta-
tistic is too large (Kruglyak et al. 1996; Kong and Cox
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Table 4

Null Conditional Mean, , and Nullm p E [S FG]G H pairs0

Conditional Standard Deviation, j pG

, of the Sharing Statistic for an�Var (S FG) SH pairs pairs0

Affected Sib Trio, Given the Trio’s Genotype
Configuration G at a Particular SNP, under the
Null Hypothesis that the SNP Is the Sole CausalH0

Site in the Region, where f Is the Frequency of
Allele 1 in the Population

G mG jG

(1 1 1 1 1 1)
6(1 � f)
1 � 3f

�2 6f

1 � 3f

(1 1 1 1 1 2)
2(2 � 3f)

1 � 3f

�2 3f

1 � 3f

(1 1 1 1 2 2) 2 0

(1 1 1 2 1 2)
3 � 2f
1 � f

�1 � 2f

1 � f

(1 1 1 2 2 2) 2 0

(1 1 2 2 2 2) 2 0

(1 2 1 2 1 2)
3 3 � 4f(1 � f)
2 1 � 3f(1 � f)

�3 � 84f(1 � f)1
2 1 � 3f(1 � f)

(1 2 1 2 2 2)
5 � 2f
2 � f

�3 � 2f

2 � f

(1 2 2 2 2 2)
2(5 � 3f)

4 � 3f

�2 3(1 � f)

4 � 3f

(2 2 2 2 2 2)
6(2 � f)
4 � 3f

�2 6(1 � f)

4 � 3f

1997). However, for the linear and exponential likeli-
hoods, these incomplete-data formulations provide an ex-
act likelihood calculation (Kong and Cox 1997). For our
test, when G is observed but the IBD information D at
this locus is incomplete, the analogous result is that,
when or is used, S is replaced by fullT T E [SFG ] p1 3 H0

, where the equality holds because there is nofullE [SFG ]′H0

phenotype information on either side of the equation. The
analogous result for is that is replaced byGT exp (dw Z )2 i i

. ExistingG full G fullE [exp (dw Z )FG ] p E [exp (dw Z )FG ]′H i i H i i0 0

software such as GENEHUNTER (Kruglyak et al. 1996),
GENEHUNTER-PLUS (Kong and Cox 1997), or AL-
LEGRO (Gudbjartsson et al. 2000) can be easily modified
to make these calculations.

Assessment of Significance Conditional on Detection
of Suggestive Evidence for Linkage

In a linkage study for a complex trait, power to detect
linkage to a given causal variant may not be high; some

luck may often be involved in obtaining, say, a suggestive
linkage result. Suppose a particular polymorphism is the
sole causal variant in the region, and suppose that the
genetic model and study design are such that the power
to detect linkage is low. Then, to detect at least suggestive
evidence for linkage, it may be necessary to have excess
sharing even beyond what would ordinarily be expected
under the genetic model for the causal variant. Suppose
one later collects SNP data from the same individuals
who were part of the linkage study, in a region showing
linkage, and then applies our test. Then conditional on
detection of at least suggestive linkage, there may be
excess sharing that cannot be fully explained by the ge-
notype data at the causal variant. Therefore, if one ap-
plies our test to only the data sets that have shown at
least suggestive evidence for linkage, the test is no longer
calibrated. For such cases, the significance of our test
may need to be assessed conditional on the fact that
suggestive evidence for linkage was exceeded.

Suppose there are n families in such a data set. Let
, where is the genotype configu-G p (G ,G , … ,G ) G1 2 n i

ration for the affected individuals in the ith family. Let
T be our test statistic ( , , or ), and let W be theT T T1 2 3

event that suggestive evidence for linkage was exceeded.
The adjusted P value of our test is then

P (T 1 t FG,W) , (4)H obs0

where is the null hypothesis that the SNP is the soleH0

cause in the region. (We note that, in principle, it would
be desirable to condition on the actual value of T, rather
than on W. However, if one conditioned on both T and

, there would be so little variation left that powerG
would be compromised.)

One can assess expression (4) by simulation from
. For each replicate, conditional on the ob-P (TFG,W)H0

served genotypes , IBD sharing byG p (G ,G , … ,G ) D1 2 n i

the ith pair can be simulated from the conditional dis-
tribution , as givenP (DFG ,both affected) p P(DFG )H i i i i0

in table 1. From this, linkage data for the rest of the
region can be simulated. The linkage result and the test
statistic T can be calculated, and the replicate is kept
only if the linkage result exceeds suggestive evidence for
linkage. The replicates that are not discarded are inde-
pendent, identically distributed draws from ,P (TFG,W)H0

and the P value given by expression (4) can then be
estimated from this empirical distribution.

Simulation Models

We perform simulation studies to assess the power of
our method to detect that a given SNP is not the sole
cause of linkage to the region. Each simulation involves

replicates of a data set of 150 ASPs with complete510
IBD information. Simulations are performed under var-
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Table 5

Values of the Allele Frequencies and Penetrance Parameters
Used in the Simulations, Where Is the Frequency of Allele 1fi

at Locus i, and the Models Are as Described in the Text

MODEL

ALLELE

FREQUENCIES PENETRANCE PARAMETERS

f1 f2 f3 p1 p2 p3 p4

I .2 .1 NA .45 .006 NA NA
II .515 .001 NA .4 .263 .01 .0015
III .271 .4 .6 .2 .00005 NA NA

NOTE.—NA p Not applicable.

Table 6

Power to Detect that an SNP Is Not the Sole Cause of
Linkage to a Region

MODEL ( )cf
AND nf ′D

HAPLOTYPE FREQUENCY

POWERh11 h12 h21 h22

I (.2):
.3 0 .06 .14 .24 .56 .9710
.2 0 .04 .16 .16 .64 .9765
.8 .5 .18 .02 .62 .18 .9808
.7 .5 .17 .03 .53 .27 .9669
.3 .5 .13 .07 .17 .63 .8793
.2 .5 .12 .08 .08 .72 .7738
.8 1 .2 0 .6 .2 .9810
.7 1 .2 0 .5 .3 .9456
.3 1 .2 0 .1 .7 .2679
.2 1 .2 0 0 .8 .0495

II (.515):
.3 0 .15 .36 .15 .34 .9811
.515 0 .265 .25 .25 .235 .9788
.3 .5 .225 .29 .075 .41 .9718
.7 .5 .440 .075 .260 .225 .9381
.485 .5 .367 .148 .118 .367 .8874
.515 .5 .39 .125 .125 .36 .8604
.3 1 .3 .215 0 .485 .8450
.7 1 .515 0 .185 .3 .6365
.485 1 .485 .03 0 .485 .1142
.515 1 .515 0 0 .485 .0477

III (.271):
.4 0 .11 .16 .29 .44 .8836
.271 0 .073 .198 .198 .531 .8921
.729 .5 .234 .037 .495 .234 .8967
.6 .5 .216 .055 .384 .345 .8366
.4 .5 .19 .081 .21 .519 .7575
.271 .5 .172 .099 .099 .63 .6360
.729 1 .271 0 .458 .271 .8671
.6 1 .271 0 .329 .4 .6491
.4 1 .271 0 .129 .6 .2576
.271 1 .271 0 0 .729 .0493

NOTE.—The models are as described in the text with the
causal SNP being locus 1 of the model in each case. is thecf
frequency of allele 1 at the causal SNP. is the frequency ofnf
allele 1, the associated allele at the tightly linked noncausal SNP.

is disequilibrium between the two SNPs. is the′D h , i,j p 1,2ij

population haplotype frequency, where i is the allele at the causal
SNP and j is the allele at the noncausal SNP. Power is calculated
at significance level .05.

ious genetic models, each of which involves epistasis
among unlinked loci. In each case, we examine power
to reject a noncausal locus that is tightly linked ( )v ≈ 0
to a causal locus, assuming various degrees of linkage
disequilibrium ( , .5, or 1) and various allele fre-′D p 0
quencies. In each case, we use test statistic of equationT1

(2), with , , and with significance as-�S p S w p jpairs G

sessed by a normal approximation. We also perform
simulations to assess the adequacy (type I error) of the
normal approximation and find that it performs ex-
tremely well in these cases (see the Results section). Spe-
cific details of the models follow.

Model I consists of two unlinked causal SNPs, both
acting dominantly, with epistasis between them. In ad-
dition to the two allele frequencies, there are two pen-
etrance parameters, and ( ), with penetrancep p p 1 p1 2 1 2

for individuals who have both at least one copy ofp1

allele 1 at locus 1 and at least one copy of allele 1 at
locus 2 and penetrance for all other individuals.p2

Model II consists of two unlinked causal SNPs, one (lo-
cus 1) acting recessively and the other (locus 2) following
a general two-allele model, with epistasis between them.
In addition to two allele frequencies, there are four pen-
etrance parameters ( ), with penetrancep 1 p 1 p 1 p1 2 3 4

for individuals who have genotype 1/1 at both locusp1

1 and locus 2, penetrance for those with both ge-p2

notype 1/1 at locus 1 and genotype 1/2 at locus 2, pen-
etrance for those with both genotype 1/1 at locus 1p3

and genotype 2/2 at locus 2, and penetrance for allp4

other individuals. Model III consists of three unlinked
causal SNPs, each acting dominantly, with epistasis
among them. In addition to the three allele frequencies,
there are two penetrance parameters ( ), with pen-p 1 p1 2

etrance for individuals with both at least one copy ofp1

allele 1 at locus 1 and at least one copy of allele 1 at
either locus 2 or locus 3, and with penetrance for allp2

other individuals.
For each of the three models above, penetrance pa-

rameters and allele frequencies are chosen, which are
given in table 5. We then focus on causal locus 1, as
defined above. For each model, we derive the joint dis-
tribution of , where is the ge-c c c{(G ,D )Fboth affected} G

notype configuration at causal locus 1 for an ASP, and
is the number of alleles shared IBD by the pair atcD

causal locus 1. We simulate replicates of a data set510
of 150 affected sibs pairs from this distribution. Con-
sider a noncausal SNP with genotype configuration nG
and IBD sharing . We assume that the noncausal SNPnD
is tightly linked ( ) with causal locus 1, so nv ≈ 0 D p

. We then generate data for the noncausal SNP,c nD G
for the cases of linkage equilibrium ( ), partial′D p 0
linkage disequilibrium ( ), and complete linkage′D p .5
disequilibrium ( ) with causal locus 1 and for var-′D p 1
ious choices of frequency for the associated allele at the
noncausal SNP. For each set of simulations, we test
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whether the noncausal SNP is the sole cause of linkage
to the region.

Results

Simulation Studies

The results of the simulation studies are presented in
table 6. In the simulations, we assume that the noncausal
SNP is tightly linked with the causal SNP, with varying
degrees of association with the causal SNP and varying
allele frequencies for the associated allele. In each case,
we test that the noncausal SNP is the sole cause of link-
age to the region. It can be seen that, in some cases, our
method has substantial power to reject the null hypoth-
esis for noncausal loci tightly linked to a true causal
locus, even when the noncausal locus is in complete link-
age disequilibrium ( ) with the causal locus. Power′D p 1
depends on a variety of factors, including sample size,
genetic model, degree of LD with the causal SNP, fre-
quency of the causal allele, , and frequency of the allelecf
that is in phase with the causal allele ( ). It is not sur-nf
prising that when model, , and are held fixed, powerc nf f
decreases with increasing LD (as measured by ). Note′D
that, when there is no LD ( ) between the causal′D p 0
and noncausal SNPs, the case is mathematicallynf p a

equivalent to the case , so that, for instance,nf p 1 � a

the first row of table 6 also applies to the case when
. When the model and are held fixed and whenn cf p .7 f

there is no LD between the causal and noncausal SNPs,
power seems fairly constant in , with a slight decreasenf
toward and a slight increase toward orn nf p .5 f p 0
1. However, for the cases when or 1, when′ cD p .5 f
is fixed, power seems to decrease monotonically as

decreases. For each of the three models, the lastc nFf � f F
line of the corresponding section of the table represents
the extreme case in which the causal and noncausal SNPs
are indistinguishable on the basis of the data. In that
case, the number in the power column represents the
chance that the true causal SNP is rejected (i.e., type I
error). For all three models, the simulated type I error
is very close to the claimed level of .05.

The simulations address the case of tight linkage, in
which v need not be exactly zero, as long as it is sufficiently
small that the probability of observing a recombination,
within the nuclear families in the data, is negligible. When
v is not negligible, IBD sharing will differ at the causal
and noncausal SNPs, so there is a question of whether it
is the linkage result at the causal or at the noncausal SNP
that one is seeking to explain. In the former case, IBD
sharing at a noncausal SNP will tend to deviate more
from its expectation under our null hypothesis in the case
of non-negligible v than it would in the case of tight link-
age. Thus, it should be easier to detect that a given SNP
is not the sole cause of linkage, and power would be

expected to be at least as high as is shown in the table.
In the case when one seeks to explain linkage at the non-
causal SNP, if we assume non-negligible v and LE
( ), then the situation should be comparable to the′D p 0
case of tight linkage and , but with a slightly dif-′D p 0
ferent genetic model applying at the noncausal SNP than
would have applied at the causal SNP.

Application to NIDDM1

We analyze an NIDDM1 data set that differs slightly
from the original data set of Horikawa et al. (2000) in
that four markers with unresolved genotyping error were
removed. The NIDDM1 data set includes 170 sibships:
121 ASPs, 34 affected sib trios, 12 affected sib quartets,
2 affected sib quintets, and 1 affected sib sextet. We
consider 22 SNPs typed in a region of ∼300 kb, with
allele frequencies estimated from a set of 112 control
individuals. Based on these 22 SNPs and 16 flanking
microsatellites, the information on IBD sharing in the
region is complete for most of the sibships.

When performing our test for a given SNP, we must
cope with the fact that genotype data for some individ-
uals may be missing at that SNP—that is, G may be
incompletely observed even when complete information
is available on D. In the case of an ASP for which G is
not completely observed for a particular SNP, we omit
that pair from the analysis of that SNP. For sibships with
�3 affected sibs, when G is not completely observed for
a particular SNP, in most cases, we are able to recon-
struct G from the observed genotype data at that SNP
combined with the sharing information D in the region.
For the remaining cases with �3 affected sibs, we impute
the missing information on G in such a way that our
(one-sided) test is guaranteed to be conservative. This is
done by imputing the G that maximizes , among thosemG

values of G consistent with the observed genotype data
and D. A formal proof that this is conservative for our
pedigrees is somewhat tedious, but the intuition is that,
when D (and hence, S) is fixed, if G implies a level of
IBD sharing that is at least as high as that actually pre-
sent, then will be lower than its trueGZ p (S � m )/jG G

value, and the SNP will be observed to explain at least
as much of the linkage as it actually explains.) Note,
however, that conservativeness of this procedure is no
longer guaranteed when the significance level is adjusted
for detection of suggestive evidence for linkage.

For each of the 22 SNPs, to test the null hypothesis
that the SNP considered is the sole cause of linkage to
the region, we use test statistic of equation (3) withT2

weights . The P value is assessed by simulation,�w p jG

using replicates and assuming complete information710
on D and G, as described in the “Hypothesis Testing
and Confidence-Set Construction” subsection of the
Methods section. When all the families are used, the P
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Table 7

Results of the Analysis of the NIDDM1 Data Set

MAP

ORDER LOCUS

ALLELE

FREQUENCY

NO. OF

FAMILIES

LINKAGE

P VALUE

P VALUE FOR OUR TEST

Unadjusted Adjusted ( )�47.4 # 10

1 SNP20 .85 153 �53.57 # 10 .0001337 .0394
2 SNP66 .88 124 �55.95 # 10 .0009932 .1048
3 SNP45 .94 163 �51.58 # 10 .0001234 .0285
4 SNP44 .94 164 �52.32 # 10 .0001009 .0376
5 SNP43a .73 160 �52.01 # 10 .0000001 .0004
6 SNP79 .97 161 �52.66 # 10 .0000244 .0247
7 SNP78 .94 162 �52.03 # 10 .0000558 .0291
8 SNP77 .92 161 �51.58 # 10 .0000522 .0228
9 SNP56 .57 149 �54.40 # 10 .0001638 .0157
10 SNP19a .56 161 �51.47 # 10 .0000347 .0042
11 SNP48 .55 154 �51.64 # 10 .0000303 .0033
12 SNP62 .81 125 �56.27 # 10 .0081385 .1174
13 SNP63a .76 130 �53.50 # 10 .0001566 .0197
14 SNP26 .92 162 �52.04 # 10 .0000356 .0137
15 SNP25 .50 156 �54.07 # 10 .0000322 .0054
16 SNP24 .98 162 �51.92 # 10 .0000053 .0201
17 SNP23 .85 158 �51.67 # 10 .0000556 .0084
18 SNP22 .61 158 �51.56 # 10 .0019207 .0253
19 SNP53 .90 155 �56.80 # 10 .0000026 .0161
20 SNP38 .62 154 �55.62 # 10 .0004898 .0196
21 SNP29 .77 151 �51.48 # 10 .0001107 .0074
22 SNP28 .56 156 �50.46 # 10 .0003044 .0057

NOTE.—The SNPs are listed in map order. The number of families (i.e., the number of sibships with
at least two genotyped affected sibs) varies from SNP to SNP because of missing data for some SNPs
in some families. The linkage P value is the P value for the ordinary allele-sharing test of linkage
applied to the nonmissing families for that SNP. The unadjusted P value for our test is the P value for
the test of : the given SNP is the sole cause of linkage, and the adjusted P value is conditional onH0

detection of suggestive evidence for linkage.
a SNPs implicated in the study by Horikawa et al. (2000).

value of the test for detection of linkage to the region
is , where linkage is detected using the ex-�51.78 # 10
ponential likelihood with weights . However,�w p j

when we consider each individual SNP, some families
may be discarded because of missing genotype data, as
described above, so the P value for detection of linkage
varies across the SNPs. To adjust the P value of our test
for detection of suggestive evidence for linkage, for each
SNP, we first simulate replicates of the nonmissing710
families to determine the threshold value of the log-like-
lihood ratio for suggestive evidence for linkage. The sig-
nificance level for suggestive linkage is set to 7.4 #

(Lander and Kruglyak 1995). To obtain the con-�410
ditional P value of our test, we simulate until we obtain
at least realizations in which suggestive evidence for410
linkage is exceeded, and we calculate the conditional P
value as described in the “Assessment of Significance
Conditional on Detection of Suggestive Evidence for
Linkage” subsection of the Methods section.

The results of the analysis are given in table 7. The
reported P values for the test that a SNP is the sole cause
of linkage to the region (last two columns of table 7)
are all one-sided, and is observed in all cases. Asided̂ 1 0
from two SNPs (SNP 62 and SNP 66), for which the

sample size is small (�125) because many individuals
are untyped for those SNPs, all of the SNPs are rejected
as being the sole cause of linkage, even after adjustment
for suggestive evidence for linkage. SNPs 62 and 66 are
rejected before adjustment but not after. Note that all
of the SNPs are tightly linked to NIDDM1, and SNPs
19, 22, 23, 25, 26, 28, 29, 38, and 43 all show significant
linkage disequilibrium with NIDDM1. Thus, the infor-
mation provided by our method is different from that
provided by tests of linkage and linkage disequilibrium.
Furthermore, this example illustrates that our test has
power to reject most of these SNPs as being the sole
cause of linkage. The two SNPs that are not rejected
(SNP 62 and SNP 66) have P values !.01 under the
unadjusted test and P values close to .1 under the more
conservative test. In addition, neither of them shows
strong LD with the trait (Horikawa et al. 2000). Thus,
although they are in our 95% confidence set, neither is
a particularly strong candidate for being the sole causal
SNP in the region. When considered in light of the LD
results, our analysis suggests that the single causal poly-
morphism may not be among those that are typed or,
alternatively, that there may be more than one causal
polymorphism in the region.
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In the study by Horikawa et al. (2000), quite a number
of the polymorphisms examined (16) showed association
with disease, including polymorphisms from two differ-
ent genes as well as intergenic regions. A smaller number
of polymorphisms (6), all located in the CAPN10 gene
or its immediate 3′ intergenic region, showed significant
association with the evidence for linkage, as determined
by the ability of genotypes at the polymorphism to par-
tition the evidence for linkage. But the odds ratios for
each of the individual variants were modest, and analysis
of haplotypes including more than one of these sites
improved the strength of the associations with both dis-
ease and the evidence for linkage. Functional studies
subsequently confirmed that at least one of these poly-
morphisms (SNP-43) encodes variation that affects ex-
pression of the calpain-10 protein (Baier et al. 2000;
Yang et al. 2001). It was ultimately concluded, on the
basis of these and other studies, that combinations of
variants at CAPN10 affect susceptibility to type 2 dia-
betes by altering expression of the calpain-10 protein.

Our results indicate that, of the individual polymor-
phisms studied—including those within the CAPN10
and GPR35 genes, as well as intergenic polymor-
phisms—all but two (SNPs 62 and 66) can be rejected,
because they are insufficient to account for the evidence
for linkage. The test we propose here thus provides dif-
ferent and complementary information to the original
test proposed by Horikawa et al. (2000), which was
essentially testing whether the observed variation was
associated with evidence for linkage. For example, de-
spite the fact that the evidence for linkage was entirely
confined to the ASPs homozygous for the G allele at
SNP-43 (LOD score 9.03 in 144 ASPs, where both are
GG homozygotes at SNP-43 and 0.01 in the comple-
mentary 186 ASPs), we can conclusively reject the hy-
pothesis that the segregation of the variation at SNP-43
can account, by itself, for the observed evidence for link-
age. This reflects the fact that the G allele at SNP-43 is
quite common (0.75 in the random sample of Mexican
Americans) and that pairs in which both members are
GG homozygotes are not expected to have the high level
of IBD sharing that is actually observed in these data.
As noted above, our findings are not inconsistent with
the hypothesis, put forward by Horikawa et al. (2000),
that combinations of variants at CAPN10 affect sus-
ceptibility to type 2 diabetes and generated the original
evidence for linkage, but our findings are also consistent
with the possibility that untested variation elsewhere in
the NIDDM1 region might fully account with the evi-
dence for linkage. In that case, the causal variation is
presumably in linkage disequilibrium with the variation
from the CAPN10 gene showing association with both
disease and the evidence for linkage.

Discussion

We have developed a new statistical approach to guide
positional-cloning studies of qualitative traits. Assuming
that many polymorphic sites have been identified and
genotyped in a region showing strong linkage with a
trait, we wish to determine which site (or combination
of sites) in the region influences susceptibility to the trait.
Our approach is to identify the polymorphic sites whose
genotypes could fully explain, in the statistical sense, the
observed linkage to the region. We formulate a hypoth-
esis test for which the null hypothesis is that a particular
polymorphic site is the sole cause of linkage to the re-
gion. By inverting this test, we construct a confidence
set for the true causal site (where this confidence set also
contains all untested sites in the region). The results of
this approach provide information that is different from
that provided by tests of linkage or association. When
used with data on affected siblings, our method allows
for a very general model for how the site influences the
trait, including epistasis with unlinked loci, correlated
environmental effects within families, and gene-environ-
ment interaction.

Simulation studies show that the method can have
high power to reject noncausal SNPs, even in some cases
when they are tightly linked and in complete linkage
disequilibrium with the causal SNP. Application to an
NIDDM1 data set (Horikawa et al. 2000) led to rejec-
tion of all the tested SNPs by the unadjusted test and
all but two SNPs by the more conservative, adjusted
test. The two SNPs that are not rejected have P values
!.01 under the unadjusted test and P values close to .1
under the more conservative test and have smaller sam-
ple size (�125) than the other SNPs. In addition, neither
of them shows strong LD with the trait (Horikawa et
al. 2000). Thus, although they are in our 95% confi-
dence set, neither is a particularly strong candidate for
being the sole causal SNP in the region. When consid-
ered in light of the LD results, our results suggest that
either there is more than one causal site in the region
or else that the single causal site is not among those
typed in the data set. Here, “more than one causal site”
should be interpreted as covering many possibilities, in-
cluding but not limited to (1) heterogeneity within the
region; (2) a combination of alleles, across multiple
sites, that is causal; and, more generally, (3) a combi-
nation of genotypes, across multiple sites, that is causal.
We note that the fact that any particular SNP is the
etiologic variant cannot be established on the basis of
statistical analysis of such a data set, but the SNPs that
can fully explain the evidence for linkage may be prom-
ising candidates for further biological study.

A feature of our method is that many polymorphic
sites can be considered without creating the problem of
multiple comparisons. Such a problem would arise if,
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Table A1

Conditional Distribution, , of the Number of Alleles DP(DFG)
Shared IBD by a Sib Pair at a Particular Microsatellite,
Conditional on the Sibs’ Genotype Configuration G at That
Locus, Where Is the Frequency of Allele i in the Populationfi

G

CONDITIONAL PROBABILITY THAT D IS

0 1 2

(i i i i)
2fi

2(1 � f )i

2fi

2(1 � f )i

1
2(1 � f )i

(i i i j)
fi

1 � fi

1
1 � fi

0

(i i j j) 1 0 0

(i j i j)
2f fi j

1 � f � f � 2f fi j i j

f � fi j

1 � f � f � f fi j i j

1
1 � f � f � 2f fi j i j

(i i j k) 1 0 0

(i j i k)
2fi

1 � 2fi

1
1 � 2fi

0

(i j k l) 1 0 0

for example, multiple hypothesis tests were performed
and only the most significant result were reported. In
contrast, we form a confidence set containing all poly-
morphic sites that were not rejected by the hypothesis
test, as well as all polymorphic sites not tested, and, in
this context, the problem of multiple comparisons does
not arise.

Our method of testing for a single causal SNP can be
generalized, in principle, to any type of causal poly-
morphism (e.g., microsatellites) and to multiple tightly
linked causal loci. Details, for the case of ASPs, can be
found in the Appendix. However, note that the power
of our method depends, in large part, on the values of

for the families in the study, whereE [SFG] � E [SFG]A H0

denotes the conditional expectation calculatedE [7F7]A

under the true genetic model. If G provides complete
information on IBD sharing among the affected indi-
viduals, then , and the givenE [SFG] p S p E [SFG]H A0

family does not provide any information under our
method. Similarly, when G provides close to complete
information on S, power is low. This is more likely to
occur when G is the genotype information on a single
highly polymorphic locus or when G is the joint ge-
notype information on several tightly linked loci, than
when G is the genotype information on a single SNP.
Low power in such cases is the price paid for the lack
of assumptions on the genetic model, in which we allow
arbitrary mode of inheritance, epistasis with unlinked
loci, correlated environmental effects within families,
and gene-environment interaction. A method that
would be powerful for highly polymorphic loci or com-
binations of sites could certainly be obtained with more
assumptions on the genetic model.

In our simulations, we assume that allele frequencies
are known, whereas, in practice, one would generally
need to estimate these from genotype data on a sample
of control individuals. Possible misspecification of allele
frequencies is an important issue in general, for linkage
and association-based methods as well as for our
method. Our preliminary analysis suggests that, when
we underestimate allele frequency, our method tends to
be conservative (and conversely when we overestimate).
These results hint at possible strategies for dealing con-
servatively with the uncertainty in allele-frequency es-
timates, and we hope to address this question in more
detail in future work.
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Appendix A

An Extension to Microsatellites and to Multiple Tightly
Linked Markers

In principle, our method can be generalized to any
type of causal polymorphism (e.g., microsatellites) and
to multiple tightly linked causal loci. First consider a
single polymorphism with m alleles. The number of pos-
sible genotypes depends on m and the number of affected
individuals. For a pair of outbred relatives, there are

m m m
m � 4 � 6 �( ) ( ) ( )2 3 4

possible genotype configurations (defined up to per-
mutation of the two individuals and permutation of the
alleles within each individual), which can be divided into
seven different categories, as shown in table A1. The
conditional distribution of for an ASP is given in{DFG}
table A1. Table A2 gives the null conditional mean and
null conditional standard deviation of S, when isSpairs

used, for each of the seven genotype categories.
To extend our method from a single causal locus to

multiple tightly linked causal loci in the region of inter-
est, we assume that no crossovers occur within the sam-
pled families, among the causal loci in the region. Under
this assumption, the hypothesized causal loci would all
have the same pattern of IBD sharing among the affected
individuals. To test the null hypothesis that a particular
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Table A2

Null Conditional Mean, , and Nullm p E [S FG]G H pairs0

Conditional Standard Deviation, ,�j p Var (S FG)G H pairs0

of the Sharing Statistic for an ASP, Given the Sibs’Spairs

Genotype Configuration G at a Particular
Microsatellite, under the Null Hypothesis that theH0

Microsatellite Is the Sole Causal Site in the Region,
where Is the Frequency of Allele i in the Populationfi

G mG jG

(i i i i)
2

1 � fi

�2fi

1 � fi

(i i i j)
1

1 � fi

�fi

1 � fi

(i i j j) 0 0

(i j i j)
2 � f � fi j

1 � f � f � 2f fi j i j

�f � f � 8f f � 2f f (f � f )i j i j i j i j

1 � f � f � 2f fi j i j

(i i j k) 0 0

(i j i k)
1

1 � 2fi

�2fi

1 � 2fi

(i j k l) 0 0

set of polymorphisms jointly explain the observed link-
age to the region, a straightforward extension of our
method would be as follows: let D be the IBD sharing
among the affected individuals in the region, and let

be the joint genotype data, where is1 L lG p (G , … ,G ) G
the genotype data for the affected individuals at the lth
putative causal locus and L is the total number of hy-
pothesized causal loci in the region. To obtain the con-
ditional distribution of , one needs the marginal{DFG}
distribution of and the conditional distribution of{D}

. To obtain the latter, one requires1 L{GFD} p {G , … ,G FD}
haplotype-frequency estimates from an appropriate con-
trol population.
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